skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Csank, Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Modern forest management generally relies on thinning treatments to reduce fuels and mitigate the threat of catastrophic wildfire. They have also been proposed as a tool to augment downstream flows by reducing evapotranspiration. Warming climates are causing many forests to transition from snow-dominated to rain-dominated precipitation regimes—in which water stores are depleted earlier in the summer. However, there are relatively few studies of these systems that directly measure the hydrologic impacts of such treatments during and following snow-free winters. This work compares the below-canopy meteorological and subsurface hydrologic differences between two thinning prescriptions and an unaltered Control during periods of extreme drought and near-record precipitation (with little snow). The field site was within a coniferous forest in the rain-snow transition zone of the southern Cascades, near the Sierra Nevada Range of California. Both thinning-prescriptions had a modest and predictable impact on below-canopy meteorology, which included their causing lower nighttime minimum temperatures in the critical summer months and higher wind speeds. Relative to the Control, both treatments affected soil moisture storage by delaying its annual decline and increasing its minimum value by the end of the season. The onset of soil moisture depletion was strongly tied to the magnitude of winter precipitation. In dry years, it began much earlier within the dense Control stand than in the treated ones, and, without snow, soil moisture was not replenished in the late spring. During high precipitation years, the storage capacity was topped off for all three stands, which resulted in similar timing of moisture decline across them, later in the season. The two thinning prescriptions increased stores through the height of summer (in wet and drought years). Finally, the basal area increment (BAI) of the remaining trees rose in both, suggesting they used the excess moisture to support rapid growth. 
    more » « less
  3. Abstract Bark beetles have impacted over 58 million acres of coniferous forest in the Western US since 2000. Most beetle impacted forests are in snow dominated, water limited headwater basins, which generate a disproportionate fraction of water supplies. Previous studies show mixed impacts of bark beetle outbreaks on streamflow with the potential to cause increased or decreased flows, but these studies either predate long‐term snowpack data, are model‐based, or examine only mountain pine beetle outbreaks. Ours is the first study to use an empirical, climate‐normalized paired catchment approach to quantify streamflow response to spruce beetle kill. Using 27 years of climate and streamflow observations from southwest Colorado, we show that in three of the six beetle impacted study basins, annual climate‐normalized streamflow increased by 22%–37% for at least three to 6 years after the beetle outbreak. Impacted basins exhibited no decreased flows and flows in unimpacted control basins remained unchanged. Among impacted basins, no single basin characteristic clearly explained variation of streamflow response. Higher runoff ratios during snowmelt contribute anywhere from 9% to 64% of streamflow increases, implying the importance of both snow and growing season processes in driving streamflow increases. These findings show variable, sometimes substantial streamflow increases in critical water supply basins following beetle kill in subalpine spruce forests, and contrast with evidence of unchanged or decreased streamflow following beetle kill in lower elevation pine forests in colder northern Colorado basins, highlighting the importance of climate and forest composition in refining hydrologic predictions following mountain forest disturbances. 
    more » « less
  4. The negative growth response of North American boreal forest trees to warm summers is well documented and the constraint of competition on tree growth widely reported, but the potential interaction between climate and competition in the boreal forest is not well studied. Because competition may amplify or mute tree climate‐growth responses, understanding the role current forest structure plays in tree growth responses to climate is critical in assessing and managing future forest productivity in a warming climate. Using white spruce tree ring and carbon isotope data from a long‐term vegetation monitoring program in Denali National Park and Preserve, we investigated the hypotheses that (a) competition and site moisture characteristics mediate white spruce radial growth response to climate and (b) moisture limitation is the mechanism for reduced growth. We further examined the impact of large reproductive events (mast years) on white spruce radial growth and stomatal regulation. We found that competition and site moisture characteristics mediated white spruce climate‐growth response. The negative radial growth response to warm and dry early‐ to mid‐summer and dry late summer conditions intensified in high competition stands and in areas receiving high potential solar radiation. Discrimination against 13C was reduced in warm, dry summers and further diminished on south‐facing hillslopes and in high competition stands, but was unaffected by climate in open floodplain stands, supporting the hypothesis that competition for moisture limits growth. Finally, during mast years, we found a shift in current year's carbon resources from radial growth to reproduction, reduced 13C discrimination, and increased intrinsic water‐use efficiency. Our findings highlight the importance of temporally variable and confounded factors, such as forest structure and climate, on the observed climate‐growth response of white spruce. Thus, white spruce growth trends and productivity in a warming climate will likely depend on landscape position and current forest structure. 
    more » « less
  5. This short summary presents selected results of an ongoing investigation into the feedbacks that contribute to amplified Arctic warming. The consequences of warming for Arctic biodiversity and landscape response to global warmth are currently being interpreted. Arctic North American records of large-scale landscape and paleoenvironmental change during the Pliocene are exquisitely preserved and locked in permafrost, providing an opportunity for paleoenvironmental and faunal reconstruction with unprecedented quality and resolution. During a period of mean global temperatures only ~2.5°C above modern, the Pliocene molecular, isotopic, tree-ring, paleofaunal, and paleofloral records indicate that the high Arctic mean annual temperature was 11°C–19°C above modern values, pointing to a much shallower latitudinal temperature gradient than exists today. It appears that the intense Neogene warming caused thawing and weathering to liberate sediment and create a continuous and thick (>2.5 km in places) clastic wedge from at least Banks Island to Meighen Island to form a coastal plain that provided a highway for camels and other mammals to migrate and evolve in the high Arctic. In this summary we highlight the opportunities that exist for research on these and related topics with the PoLAR-FIT community.RÉSUMÉCe bref résumé présente les résultats choisis d'une enquête en cours sur les déclencheurs qui contribuent à l’amplification du réchauffement de l'Arctique. Les conséquences du réchauffement sur la biodiversité arctique et de la réponse du paysage au réchauffement climatique sont en cours d’être interprété. Des dossiers nord-américains de paysage à grande échelle et le changement paléoenvironnementales durant le Pliocène sont exceptionnellement préservés et scellées dans un état de congélation qui fournissant une occasion pour la reconstruction paléoenvironnementale et faunistique avec une qualité et une résolution sans précédent. Pendent une période de réchauffement global seulement ~2,5°C au-dessus de moderne les dossiers, moléculaire, isotopique, annaux de croissance, paléofaunistique et paléovégétation indiquent que l'Arctique a connu une augmentation de la température annuelle moyenne de 11°C–19°C au-dessus de moderne, en montrant un inferieur gradient de température latitudinal qu'aujourd'hui. Il semble que le réchauffement intense pendent le Néogène a provoqué la décongélation et erosion pour libérer les sédiments et créer une plaine côtière continuel et épaisse (> 2,5 km dans lieux) qui a fourni une route pour les chameaux et autres mammifères pour migrer et évoluer dans l’Haut-Arctique. Dans ce résumé, nous soulignons les opportunités qui existent pour la recherche sur ces sujets et les sujets connexes avec la communauté PoLAR-FIT. 
    more » « less